The pair correlation function in the ground state of the two-dimensional spin-1/2 XY model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1981 J. Phys. A: Math. Gen. 14 L69
(http://iopscience.iop.org/0305-4470/14/3/004)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 05:42

Please note that terms and conditions apply.

LETTER TO THE EDITOR

The pair correlation function in the ground state of the two-dimensional spin $-\frac{1}{2} X Y$ model

S B Kelland, D D Betts \dagger and J Oitmaa \ddagger
Department of Physics and Theoretical Physics Institute, University of Alberta, Edmonton, Canada T6G 2J1

Received 25 November 1980

Abstract

The decay to a constant value of the correlation function $\left\langle S_{0}^{x} S_{r}^{x}\right\rangle$, in the ground state of the spin- $\frac{1}{2} X Y$ ferromagnet in two dimensions, is found to be exponential.

In this Letter we examine the ground-state pair correlation function of the twodimensional spin- $\frac{1}{2} X Y$ model. The Hamiltonian for this model is

$$
\begin{equation*}
\mathscr{H}=-2 J \sum_{\langle i j\rangle}\left(S_{i}^{x} S_{i}^{x}+S_{i}^{y} S_{j}^{y}\right) \tag{1}
\end{equation*}
$$

where the S_{i} are the usual quantum mechanical spin operators and the sum is over nearest-neighbour pairs.

Mermin and Wagner (1966) proved that this model has no long-range order for $T>0$. Nevertheless, it is generally believed that this model undergoes a phase transition at a finite temperature associated with the unbinding of vortex pairs (Kosterlitz and Thouless 1973). Above the transition temperature the spin-spin correlations $\left\langle\boldsymbol{S}_{0}^{x} \boldsymbol{S}_{r}^{x}\right\rangle$ decay exponentially. Below the transition, in the topologically ordered phase, these correlations decay as a power of the separation distance r. This behaviour is usually expressed in terms of the exponent η :

$$
\begin{align*}
\left\langle S_{0}^{x} S_{r}^{x}\right\rangle & \propto 1 / r^{d-2+\eta} \\
& =1 / r^{\eta}, \quad d=2 . \tag{2}
\end{align*}
$$

In the classical or $s=\infty$ case the Kosterlitz-Thouless theory implies that $\eta=\frac{1}{4}$ at T_{c}. Spin-wave (Wegner 1967), and renormalisation-group (Amit et al 1980) calculations indicate that η is proportional to T as T approaches zero. At $T=0$, however, there appears to be a first-order transition into a state with non-zero long-range order. In fact, by extrapolating to the thermodynamic limit from finite-lattice calculations, Oitmaa and Betts (1978) estimate

$$
\begin{align*}
\left\langle M_{x}^{2}\right\rangle / N^{2}=N^{-1} \sum_{r}\left\langle S_{0}^{x} S_{r}^{x}\right\rangle & =0.116 \pm 0.0002 \text { (square) } \\
& =0.104 \pm 0.002 \text { (hexagonal) } \tag{3}
\end{align*}
$$

\dagger Dean of Arts and Science, Dalhousie University, Halifax, Nova Scotia, Canada B3H 3J5 \ddagger School of Physics, University of New South Wales, Kensington, NSW, Australia 2033.
for the ground state of the spin $-\frac{1}{2} X Y$ model. Here N is the number of sites in the finite lattice. The expression (2) is therefore inappropriate in this case. Jullien et al (1980) have apparently overlooked this and calculated a ground-state value of $\eta=1.21$ for a ferromagnetic spin- $\frac{1}{2} X Y$ model on a triangular lattice.

There are two possibilities. Either

$$
\begin{equation*}
\left\langle S_{0}^{x} S_{r}^{x}\right\rangle \sim\left\langle S_{0}^{x} S_{\infty}^{x}\right\rangle+A / r^{a} \tag{4}
\end{equation*}
$$

or

$$
\begin{equation*}
\left\langle\boldsymbol{S}_{0}^{x} \boldsymbol{S}_{r}^{x}\right\rangle \sim\left\langle\boldsymbol{S}_{0}^{x} \boldsymbol{S}_{\infty}^{x}\right\rangle+B \mathrm{e}^{-b r} \tag{5}
\end{equation*}
$$

as $r \rightarrow \infty$.
We have analysed the data from finite-cell calculations on the square and hexagonal lattices to determine which of these two possibilities obtains. Most of these data were available from the work of Oitmaa and Betts; however, the 20 -site cell on the square lattice was a new calculation requiring the construction of a matrix of dimension 2403 and determination of its dominant eigenvalue and corresponding eigenvector.

The relatively small size of the finite cells permits evaluation of pair correlations for only a limited separation r. Discriminating between (4) and (5) is therefore not a simple matter. It has proved useful to compute the moments

$$
\begin{equation*}
\mu_{m}(N)=N^{-1} \sum_{r}\left(\left\langle S_{r}^{x} \boldsymbol{S}_{0}^{x}\right\rangle_{N}-\left\langle\boldsymbol{S}_{0}^{x} \boldsymbol{S}_{\infty}^{x}\right\rangle\right) r^{m} \tag{6}
\end{equation*}
$$

for several values of m. As N gets large these sums will approach zero or diverge depending on whether m is less than or greater than the leading power in (4). We have computed these moments for $N=8,10,16,18$ and 20 on the square lattice, and $N=6$, 8,14 and 18 on the hexagonal lattice. The results are shown in figures 1 and 2 . In both

Figure 1. Plot of the moments $\mu_{m}(N)$ for several values of m on the square lattice.

Figure 2. Plot of the moments $\mu_{m}(N)$ for several values of m on the hexagonal lattice.
cases, for values of m as large as four, the final tendency of the sums is towards zero. From this we conclude that the pair correlations approach a constant value exponentially fast.

The value of b in equation (5) can be estimated from the semi-log plot in figure 3. This gives a value of $b \simeq 1$ for both the square and hexagonal lattices.

Figure 3. Plot of $\ln \left(\left\langle S_{0}^{x} S_{r}^{x}\right\rangle_{N}-\left\langle S_{0}^{x} S_{\infty}^{x}\right\rangle\right)$ against r for $N=20$ on the square lattice (squares) and $N=18$ on the hexagonal lattice (circles). The broken line has a slope of -1 .

References

Amit D J, Goldschmidt Y Y and Grinstein G 1980 J. Phys. A: Math. Gen. 13585
Jullien R, Penson K A, Pfeuty P and Uzelac K 1980 Phys. Rev. Lett. 441551
Kosterlitz J M and Thouless D J 1973 J. Phys. C: Solid State Phys. 61181
Mermin N D and Wagner H 1966 Phys. Rev. Lett. 171133
Oitmaa J and Betts D D 1978 Can. J. Phys. 56897
Wegner F 1967 Z. Phys. 206465

